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Cross Well DataCross Well Data
•• VVpp traveltravel--time tomographytime tomography

–– Contours of Contours of ∆σ∆σ are overlaidare overlaid

–– Large Large ∆∆VVpp @ @ --1510 coincides 1510 coincides 
with large +with large +∆σ ∆σ 

•• EM inversionEM inversion
–– ++∆σ ∆σ could be movement of could be movement of 

brine or noisebrine or noise

•• Further work to tie to VSP and Further work to tie to VSP and 
logs is required to interpretlogs is required to interpret
–– Possible fault induces upward Possible fault induces upward 

migrationmigration

–– Possible movement of CO2 Possible movement of CO2 
&/or brine up annulus of &/or brine up annulus of 
injection wellinjection well
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Path from geophysics to reservoirPath from geophysics to reservoir

•• Geophysical estimates of VGeophysical estimates of Vpp, V, Vss, and , and σσ
•• RockRock--physics model that relates geophysical physics model that relates geophysical 

parameters to reservoir parametersparameters to reservoir parameters

•• Two approaches takenTwo approaches taken
–– RockRock--physics transform (Vphysics transform (Vpp, V, Vss, s) , s) --> (S> (Sww, , φφ))

–– Bayesian inversionBayesian inversion
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RockRock--PhysicsPhysics
•• VelocityVelocity

–– HertzHertz--Mindlin & Mindlin & HashinHashin--
StrikmanStrikman (effective dry rock (effective dry rock 
bulk modulus)bulk modulus)

–– Dry frame Dry frame K(PK(Peffeff))
–– GassmannGassmann (fluid (fluid 

substitution)substitution)

•• DensityDensity
–– Mixing lawMixing law

•• Simplex inversion for Simplex inversion for 
model parametersmodel parameters
–– Input (Input (φφ, S, Sgg, S, Sww, , P,T,oilP,T,oil API, API, 

brine salinity)brine salinity)
–– Output (grain Output (grain -- υυ,,ρρ,K,K, critical , critical 

φ, φ, gas density)gas density)

Fixed ParametersFixed Parameters

Critical PorosityCritical Porosity 0.380.38

Oil APIOil API 28.528.5

Brine SalinityBrine Salinity 0.070.07

Gas GravityGas Gravity 0.590.59

Temperature©Temperature© 67.767.7

Regression FitRegression Fit

44.544.5Grain Shear Mod.Grain Shear Mod.

0.260.26Grain Poisson Grain Poisson 

25122512Grain DensityGrain Density

4.14.1# Contacts/grain# Contacts/grain
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Archie’s LawArchie’s Law

•• Logs determine porosity Logs determine porosity 
exponentexponent

•• No variable SNo variable Sww, so S, so Sww

exponent is unknownexponent is unknown
–– Limited sensitivity to SLimited sensitivity to Sww

exponent at small exponent at small ∆∆SSww

–– At higher At higher ∆∆SSww unknown unknown 
exponent exponent --> 10% variation > 10% variation 
in estimatein estimate

•• Inversions run at SInversions run at Sww
--1.81.8

Injection well



Earth Science                  Division
ERNEST ORLANDO LAWRENCE
BERKELEY NATIONAL LABORATORYBERKELEY LAB 5/3/05

Prediction from RockPrediction from Rock--Physics Physics 
transformtransform

•• VVpp, V, Vss, , ρρ model used to model used to 
convert convert ∆∆VVpp to to ∆∆SSww

•• Archie’s Law used to convert Archie’s Law used to convert 
∆σ∆σ to to ∆∆SSww

•• Seismic resultSeismic result
–– 50% S50% Sww at at ObsObs. well. well

–– Nov 2 log average SNov 2 log average Sww = = 
83%83%

•• EM resultEM result
–– 90% S90% Sww at at ObsObs. Well. Well

–– Dec 2 log average SDec 2 log average Sww = = 
80%80%
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Bayesian Estimation ModelBayesian Estimation Model
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where, D is the standard deviation of the errorswhere, D is the standard deviation of the errors
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MCMC Sampling MethodMCMC Sampling Method

•• MCMC methods use a variety of algorithms to      MCMC methods use a variety of algorithms to      
update Markov chains, which are convergent to the update Markov chains, which are convergent to the 
true distribution true distribution 
–– chains are irreducible and aperiodic.chains are irreducible and aperiodic.

•• Traditional Monte Carlo (MC) methods (e.g., Bachrach Traditional Monte Carlo (MC) methods (e.g., Bachrach 
et al. [2004]) draw samples uniformly in entire feasible et al. [2004]) draw samples uniformly in entire feasible 
space, but MCMC methods sampling density is space, but MCMC methods sampling density is 
proportional to the true probability density function.proportional to the true probability density function.

•• For example, in Bachrach’s paper, the traditional MC For example, in Bachrach’s paper, the traditional MC 
methods need to draw 100,000 or more samples, but methods need to draw 100,000 or more samples, but 
MCMC methods only need to draw 2,400 samples with MCMC methods only need to draw 2,400 samples with 
the first 400 as burnthe first 400 as burn--in.in.
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Joint inversion Joint inversion 

C

BB

•• Estimated VEstimated Vpp and and σσ at the at the 
two times are used to two times are used to 
estimate Swestimate Sw

•• Joint estimation removes Joint estimation removes 
artifacts not common to bothartifacts not common to both

•• Predicted has a time smear Predicted has a time smear 
of 1 month due to time lag in of 1 month due to time lag in 
surveyssurveys

•• CC--sand Ssand Sww = 75= 75--85%85%
–– Log ~ 80%Log ~ 80%

•• Indication of COIndication of CO22 reaching reaching 
the B sand abovethe B sand above
–– SSww = 75= 75--85%85%
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DiscussionDiscussion
•• Processing is not completeProcessing is not complete

–– Refinement on seismic picks and sensor rotationRefinement on seismic picks and sensor rotation

•• EM inversions have not been exhaustiveEM inversions have not been exhaustive
–– Data sensitivity analysis and further editing may Data sensitivity analysis and further editing may imporveimporve

•• Both seismic and EM inversions could benefit by Both seismic and EM inversions could benefit by 
crosscross--iterations where models are transformed to iterations where models are transformed to 
each other and used as starting pointseach other and used as starting points

•• Input from Final VSP models has not been Input from Final VSP models has not been 
incorporatedincorporated
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ConclusionsConclusions
•• Both timeBoth time--lapse EM and seismic see changes lapse EM and seismic see changes 

realatedrealated to CO2 movement to CO2 movement 
–– Noise levels need to be reducedNoise levels need to be reduced

•• Both techniques suggest possible movement of fluids Both techniques suggest possible movement of fluids 
(CO2 and/or brine) up the injection well (CO2 and/or brine) up the injection well annulasannulas and and 
into upper formationsinto upper formations

•• Transformation of seismic alone via rockTransformation of seismic alone via rock--physics physics 
model yields lower Sw estimate in Novembermodel yields lower Sw estimate in November

•• Transformation of EM alone via rockTransformation of EM alone via rock--physics model physics model 
yeildsyeilds higher Sw estimates in Decemberhigher Sw estimates in December

•• Joint inversion estimates of Sw in C sand are very Joint inversion estimates of Sw in C sand are very 
close to logged valueclose to logged value

•• Joint inversion estimates of Sw indicate Joint inversion estimates of Sw indicate chanechane in B in B 
sandsand

•• Further work will improve all estimatesFurther work will improve all estimates




